Aero-Science (For P.A.F. College, Sargodha Only): 2001-2002

2001-2002

APPENDIX 'A'
(Outlines of Tests)

	and the second second				1	Marks.
Paper 'A' :	Aero-engines (Written) :	• •	***		214	100
Paper 'B';	Navigation (Written):		-		**	100
				Total ;	***	200

Note: —The questions will be set in each paper. Candidates are to attempt any five except in Paper B in which the question on Computers will be compulsory.

APPENDIX 'B'

(Syllabi and Courses of Reading)

Paper 'A': Aero-engine (Written):

Note: —The depth and treatment of the topics given below will conform to the relevant material specially published by the P.A.F. College, Sargodha. The Material is referred to below 1

S. No.

Topic

Reference Material Training

Notes and Precis.

1. Gas Dynamics:

(a) Continuity Equation-Derivation.

AENG-B-I

- (b) Momentum Equation-Derivation.
- (c) Energy Equation-Derivation.
- (d) Thrust of a Static Jet Engine-Derivation.
- (e) Thrust of a Moving Jet Engine-Derivation.
- (f) Thrust of a Turbofan Engine.
- (g) Engine Performance Parameters

Definition of :

- (1) Propulsion Efficiency.
- (ii) Thermal Efficiency.
- (iii) Propeller Efficiency.
- (iv) Over all Efficiency.
- (h) Derivation of Brequet's Range formula and its analysis.
- (i) Take-Off Thrust.
- (i) Specific Fuel Consumption.
- (k) Effective exhaust Velocity.

- (1) Gross Thrust.
- (m) Net Thrust.
- (n) T-S diagram of actual and ideal, Turb-jet, Efficiencies of Diffuser, Compressor. Turbine and Nozzle, Pressure Ratios of Diffuser compressor, Combustor
- (0) Characteristics of subsonic and supersonic flow in venturi tube, (Review).
- (p) Shock wave formation (Review).

2. Ramjet and Pulsejet:

AENG-B-II

- (a) Thermodynamic limitations of Turbojet Engine.
- (b) Operation Principle of Ramjet.
- (c) Subsonic Combustion Ramjet.
- (d) Supersonic Combustion Ramjet (Scram Jet),
- (e) Application of Ramjet.
- (f) Operating Principle of Pulsejet.
- (g) Advantages and disadvantages of Pulsejet.

3. Intakes:

(a) Introduction.

AENG-B-III

- (b) Ideal Intake Conditions.
- (b) Ideal Intake Conditions.
- (c) Flow speed and pressure behind Shockwaves.
- (d) Intake design.
- (e) Intake Shape.
- (f) Types of Intake for Supersonic Flight.
- (g) Problems of Supersonic Intake Design.

4. Compressors:

(a) Introduction.

AENG-B-IV

- (b) Requirements of a Compressor.
- (c) Centrifugal Compressor:
 - (i) Introduction.
 - (ii) Principles of Operation.
 - (iii) Impellers.
 - (iv) Diffuser.
- (d) Axtal Flow Compressor.
 - (i) Introduction.
 - (ii) Construction.

(iii) Principles of Operation.	
(iv) Compressor Stall and surge (only introduction).	
(e) Comparison of Axial Flow and Centrifugal Flow Complossor Buetnes.	
(i) Factors.	
(#) Material.	
(f) Antistall devices.	
(g) Effects of stall and Surge.	
5. Combustion Chambers : AEN	G-B-V
(a) Introduction.	
(b) Combustion system requirements.	
(c) Flow through typical Combustion Chamber	
(d) Combustion System Layout.	
(e) Combustion Chamber Material and Defects.	
(f) Burners.	
6. Turbines: ABN	G-B-VI
(a) Introduction.	
(b) Turbine Blading.	
(c) Energy transfer from Gas Flow to Turbine.	
(d) Vane and Blade profile.	
(e) Turbines operating Conditions.	
(f) Turbine installations.	
(g) Balancing and Testing of Turbines.	
(h) Turbine Faults.	
	G-8-V H
(a) Introduction.	
(b) The Exhaust Unit	
(c) The Jet Pipe.	

(d) The Nozzle.

(e) Variable Geometry Nozzle.

AENG-B-VIII 8. Thrust Augmentation: (a) Introduction. (b) Water injection. (c) Re-heat. (d) Principles of Re-heat: (i) Thrust Production. (ii) Variation of Nozzle area. (iii) Specific Fuel Consumption. (e) After Burner Components. (f) Re-heat ignition System. (g) Re-heat Control. (h) Choice of ignition and Control System. AENG-B-IX 9. Thrust Reversal: (a) Requirements of Thrust Reversal. (b) Layout and Operation of Typical Thrust Reversing System. (c) Safety Features. 10. Turboprop and Turbofan Engines : AENG-B-X Operating principles and general characteristics. AENG-B-XI 11. V/Stol Engines: (a) Powerplant Arrangements: (i) Composite Power Plant. (ii) Vactored Thrust. (b) Engine Types: (i) Lifting Engines. (ii) Vectored Thrust Engines. (c) Advantages of Lift-Thrust Turbofan.

(d) Large aircraft requirements and Supersonic aircraft requirements.

(c) Methods of reducing or eleminating fuel losses. (d) Aviation turbine fuels, AVTUR-AVTAG-AVCAT. AENG-B-XI

12. Gas Turbine Fuels:

(a) General Characteristics.

(b) Vapour pressure.

13. Rocket Motors :

AENG-B-XIII

- (a) Rocket performance.
- (b) Solid propellant Rocket Motors.
 - (i) Main Components.
 - (ii) Nozzles and nozzle cooling.
 - (iii) Thrust vector control.
- (c) Liquid propeilant Rocket Motor:
 - (i) Liquid propellant feed systems.
 - (ii) Combustion chamber and nozzle.
 - (iii) Liquid Rocket injectors.
- (d) Introduction to other propulsion system like Nuclear Rockets and Electrical propulsion Units.

14. Specific Engine System:

AENG-B-XIV

- (a) Fuel system of MFI-17 Aircraft.
- (b) Fuel system of T-37 Aircraft.
- (c) Hydraulic system of T-37 Aircraft.

Paper 'B': Navigation:

1. Introduction :

- (a) The purpose and importance of aerial Navigation.
- (b) The definition of five types of aerial Navigation i.e.
 - (i) Contract or visual.
 - (ii) Radio.
 - (iii) Radar.
 - (vi) Astro.
 - (v) Dead. Reckoning.
 - (vi) Interial Navigation.
- (c) The dimensious of Navigation.

2. The form of the Earth:

- (a) The shape of the earth.
- (b) The rotation of the earth.
- (c) The representation of various lines on the surface of the earth and the use of :
 - (i) Great circle.
 - (fi) Small circle.
 - (iii) Meridian.
 - (iv) Equators.
 - (v) Latitude.
 - (vi) Longitude.
 - (vii) Rhumb Line.
- (d) Position and Comparison of Position:
 - (i) Change of longitude.
 - (iii) Change of latitude. *
 - (iii) Solution of Problems.

3. Distance and Their Measurements :

- (a) Distance Measurement :
 - (i) Nautical miles.
 - (ii) Statute miles.
 - (iii) Kilo Meter.
- (b) Inter conversion of units.

4. Direction on the earth :

- (a) Angular measurement.
- (b) True direction.
- (c) Magnetic direction.
- (d) Variation.
- (e) Iso gonal.
- (f) Compass direction.
- (g) Deviation.
- (h) Heading-Compass-Magnetic-True (Problems).

5. Elementary Definitions:

- (a) Heading.
- (b) Course.
- (c) Draft.
- (d) Track.

- (e) Air Speed 1
 - (t) LA.S.
 - (#) C.A.S.
 - (##) E.A.S.
 - (1) T.A.S.
 - (f) Ground speed.
 - (g) Bearing.
 - (h) Relative Bearing.
 - (f) Ground position.
 - (f) Pin Point.
 - (k) Fix.
 - (I) Height.
 - (m) Elevation.
 - (n) Altitude.

6. Methods of Reporting Position,:

- (a) The place-name -method-and its illustration
- (b) The bearing distance method.
- (c) The latitude and longitude method.

7. Pressure Instruments :

- (a) The Principle, construction and errors of the air speed indicator.
- (b) The Principle, construction and errors of the altimeter.
- (c) The solution of altimeter problems.
- (d) The Principle, construction and errors of V.Y.I.
- (e) Conversion of Mach No. to Speed.

8. Map Projections:

- (a) The properties of an ideal projection.
- (b) Stages in map construction.
- (c) The types of projections-conciel-Azimuthal cylindrical-Mathematical.
- (d) Azimuthal Projection:
 - (1) Polan Gnomonic.
 - (fi) Equitorial Gnomonic.
 - (##) Oblique Gnomonic.
- (e) Cylindrical Projection: : Mercator's Projection.
- (f) Topographical Profections:
 - (i) I.M.P.
 - (ii) Lamberts conformal.

(g) Measurement of direction and distance on I.M.P. Lambert's conformal, Composite problems.

9. Map Reading No. 1 & 2:

- (a) The relief on the earth's surface and its representation on a map.
- (b) The representation of scale by :
 - (i) Representative fraction.
 - (ii) Statement in words.
 - (iii) Graduated scale.
- (c) The relative value of ground features on maps.
- (d) Conventional signs on IMP and lambert's conformal.
- (e) The technique of map reading when visibility is poor and when uncertain of position.
- (f) The technique of map reading at night.
- (g) The technique of map reading at low and high level.

10. Magnetism:

- (a) Revision of basic theory of magnetism.
- (b) The earth's magnetic field.
- (c) The resolution of the earth's magnetic field into components.
- (d) The effect of components of a magnet.
- (e) Ali craft magnetism.
- (f) The resolution of components of aircraft magnetism.
- (g) The derivation of co-efficients.
- (h) The compass swing.

11 Compass No. 1

- (a) The B-16 Compass:
 - (i) Construction.
 - (ii) Errors and limitations.
 - (tii) Pre-flight check.
- (b) The J-2 Compass:
 - (i) Construction.
 - (ii) Pre-flight checks.
 - (iii) Errors and limitations.
 - (tv) R.M.I.

12. Computer :

(a) The need and purpose of the computer.

(b) Solution of:

- (i) Multiplication and division problems on the computer.
- (ii) Time distance and speed problems.
- (iii) Fuel consumption problems.
- (iv) True Air Speed problems.
- (v) The Attitude problems.

(c) Conversion of:

- (i) Units on the computer.
- (ii) Speed to Mach No. and vice. versa.
- (d) Computing of heading, drift and ground speed, composite problems.

13. Last Procedure :

- (a) Causes of error in Navigation.
- (b) The procedure of fuel saving to be adopted when uncertain of position.
- (c) To make use of radio aids if uncertain of position.
- (d) General lost procedure.

14. Pilot Navigation :

- (a) Use of the 'One in Sixty Rule'.
- (b) Sowing the problems of 'One in Sixty Rule' on the Computer.
- (c) Gain or lose time by :
 - (i) The 'dog leg'.
 - (ii) By change of I.A.S.
 - (iii) By 'S' turns and 3600 turns.
- (d) Use of position lines for Navigation.
- (e) Use of radio and radar fixes for Navigation.

15. Flight Documents :

- (a) The flight information publication A.F.M. 96-5 and its use in flight planning.
- (b) The high and low level led down charts.

16. Radio Navigation Aids:

- (a) The assistance provided by U.D.F. station.
- (b) The use of fixer stations and typed of fixes.
- (c) Navigation assistance provided by G.C.I. units.
- (d) Rodio Compass
- (e) V.O.R.
- (f) Tacan.
- (g) G.C.A.
- (h) I.L.S.

17. Radio Navigation :

- (a) How homing is carried out with the help of Radio Compass.
- (b) How tracking out is carried out with the help of Radio Compass.
- (c) The distance & time to a radio facility with the help of change of bearing.

18. Pre-Flight Planning:

- (a) The importance and need of the following for planning.
 - (i) Met Briefing.
 - (ii) Selection of maps.
 - (iii) Selection of Route.
 - (lv) Method of calculation of safety attitude.
 - (v) Medium level and high level separation system.
- (b) The Iceal radio and radar sites.
- (c) The local prohibited, danger and restricted areas.

19. Flight Planning No. 2

- (a) Use of the dash one for flight planning.
- (b) To plan a long Navigation cross country.
- (c) To plan a mission involving climb and descent on trach.

20. Low Level Navigation :

- (a) The problems peculerto low level missions particularly to high fuel consumption in Jet aircraft.
- (b) To plan a typical low level navigation mission.
- (c) The difficulties involved in recognising ground features during a low level mission.

21, Composite Problems High Attitude Navigation :

- (a) The effect of high wind associated with high attitude.
- (b) The need for calculating mean wind for climb and descent.
- (c) The effect of aircraft speed on drift angle.

22. High-Law-High Mission Planning:

23. Tactical Navigation:

- (a) The critical point (C.P.) and its solution by graph and formula:
- (b) The Radius of action problem(ROA) and its solution by graph and prohibited.
- (c) The point of no return (P.N.R.) and the difference between P.N.R. and R.O.A.
- (d) Searches and Reasons (different types of Search).

24. Cruise Control:

- (a) Constant Power.
- (b) Constant Speed.
- (c) Max. Edurance.
- (d) Max. Range.

25. Concept of Colestial Navigation:

- (a) The celestial sphere and its coordinates.
- (b) Rotation and revolution.
- (c) Seasons.
- (d) Celestial coordinates.
- (e) Altitude & Azimuth.
- (/) Celestial fix.

26. Time :

- (a) The following definite of time:
 - (i) Year.
 - (ii) Day.
- (b) The following type of time and their interconversion:
 - (i) Local mean time.
 - (ii) Greenwich mean time.
 - (iii) Standard time.
 - (iv) Zone time.
- (c) The International Date line.
- (d) The calculation of sunrise and sunset time with the help of A.F.M. 96-5.

27. Modern Navigation Techniques:

- (a) Doppler's Principle.
- (b) Rader P.P.I.
- (c) Inertinal Navigation system.
- (d) Omege.
- (e) Astro Tracker.